A person-friendly web of information exchange

Context

People communicate in myriad ways. We have channels and catalogues of information in various forms such as encyclopedias, dictionaries, maps, photo albums, and more. Often, information exists in separate realms, and is difficult to combine into rich and evolving forms.

Needs

People need a tool(kit) that is easy to use. There needs to be little separation, or contortion, from working directly with the information we wish to share. we need to remove barriers to information access. We need to reward improvement and usefulness, while filtering and discouraging abuse.

The Challenge

Create an open source interface that abstracts the complexities of API/data management. Enable people of all skills and abilities to create graphs and composite views of information from many sources.

The Interface

People will select information types and sources and then connect the information on a canvas to create a composite display. These composites can be bundled and shared as well as embedded within other composite displays.

Operations

The system might consist of modules to work with data. Generally speaking, there are at least three primary categories of modules.

Query

Make request(s) for information, about the condition of information, and search for relevance.

Transform

Once information is located it may need to be modified, combined, filtered, etc.

Render

Information may be rendered in at many stages of the process and in many forms, such as documents, tables, graphs, and multimedia output.

Inspiration

Brett Victor‘s work on interface design, and presentations such as Learnable Programming.

GIS Definitions from Geog 85

Attribute

An attribute is a quality or characteristic of an object, observation, event, etc. Attributes can be recorded as fields in a database, columns in a spreadsheet, or through other structures and data formats. Attribute data can be classified into general types that generally align with statistical data types – i.e. category, numeric, etc.

Census block group

Census blocks are the smallest division of the U.S. census system, where information is collected from 100% of the households therein. Census blocks are clustered into groups, called block groups. Block groups form together in larger census tracts. This footprints of block groups and tracts are available, in TIGER line format, from the U.S. Census website.

See: https://www.census.gov/geo/maps-data/data/tiger-line.html

http://www.census.gov/geo/reference/gtc/gtc_bg.html

http://en.wikipedia.org/wiki/Census_block_group

COGO

COGO is short for coordinate geometry, and is a reference language describing the geometric properties of observed objects. These observations, often provided by land surveyors, can be converted to digital representations using basic geometry components such as lines or arcs. An early implementation of COGO was the Integrated Civil Engineering System (ICES) created at Massachusettes Institute of Technology.

See: http://wiki.gis.com/wiki/index.php/COGO

Digital Elevation Model (DEM)

Digital Elevation Model data describe the Earth’s surface. The data can be structured as raster or vector format. The raster format represents the entire surface as a regularly spaced grid of points, while the vector format can contain only the number of points necessary to render the surface at a desired accuracy level. Each point, or node, in the data describe the elevation of the Earth’s surface at that particular place.

Geographic coordinates

Geographic coordinates assign values to points on the Earth’s surface. The values can be combinations of up to three numbers, usually indicating latitude, longitude, and altitude. The coordinates are overlain on a surface representing the entire surface, or a subset, of Earth. Different shapes, called datums, can be used to represent the Earth’s surface. This produces variability in accuracy between points on different datums, where the same coordinates on two datums can be meters apart.

Georeference

Georeferencing involves associating spatial or geographic locations (i.e. coordinates) with data or objects. This can include indicating locations of objects depicted in images, such as aerial photographs.

Map projection and datum

A map projection is a process whereby the spherical surface of the earth is unwrapped and flattened to display as a map. The projection is a mathematical process that assumes a generic shape for the surface of the Earth, such as a sphere or ellipsoid, and then transforms each point on the surface to a point on a two dimensional grid. A projection can be thought of, and is analogous to, the shadow between your hand and a wall when shining a flashlight on the side of your hand opposite to the wall. There are hypothetically unlimited ways that a surface can be projected, and each method introduces some distortion in the process – creating inaccuracies in the projected result.

Map Scale

Map scale describes a ratio of one map unit as it relates to real world units of the same measurement. E.g. how many real world inches are represented by one inch on a map.

Metadata

Metadata are data about data. Metadata describes characteristics of data that are not directly indicated or inherent. This can include projection/datum information, data quality/lineage assessment, attribution, licensing, and derived characteristics such as number of geometries, spatial extents, distribution of values, etc.

Orthophoto

When taking images, including aerial photographs, there are natural distortions that occur due to perspective and optics. With aerial photographs, distortions such as perspective/tilt, lense distortion, and topographical differences, can be corrected to produce a ‘flattened’ image. This process is called orthorectification and the resulting images can be more accurately used in conjunction with other spatial data for base layers, etc.

See: http://wiki.gis.com/wiki/index.php/Orthophoto

Peter Gleick: The Real Cost of Water We Use

Lecture notes

World water crisis
failure to meet basic human needs for water
we have knowledge of how to provide clean water and sanitation
have failded to do so for large percentage of Earth’s population

1.5-2 million preventable deaths per year

scarcity/resource depleation

arid regions
northern Africa
persian gulf

water quality
we contaminate fresh water
human waste
industrial waste

climate change
humans are changing climate at rates much faster than natural rates
will impact natural hydrologic cycle and water distribution systems

will affect water availability, quality, etc.

Human uses of water
industrial
food production
irrigated agriculture (40% of world’s food)

ecosystems
all water comes out of natural ecosystems
humans move water across ecosystems.
i.e. out of natural water shed area
divert rivers
affecting species, causing extinction

ecosystems cross borders.
Colorado river basin
shared by seven states and Mexico
legal agreements, compacts, and treatee
Nile is shared by ten nations
Egypt, etc
Danube is shared by eighteen nations

water, politics, conflict

Peak water
exponential growth has a tendency to get out of hand
population growth
economic growth (GNP)
CO2 concentration in atmosphere (greenhouse gasses)

peaking curve
exponential at first
peaks at some point
falls thereafter
may recover, or stabilize

e.g.
peak oil
fishery population

‘s’ curve
slow growth at first
then exponential
peaks and levels off

some resources are non-renewable
oil (renewal process slower than is useful for humans, consumption outpaces)

water is, basically renewable
flow limited – hydrologic cycle
cannot use more than natural flow provides
e.g. Colorado river does not complete its natural course to the Gulf of California
e.g. solar energy – sun provides steady stream of energy

non-renewable stocks of water
fossil water
e.g. ogalala aquifer
pumping faster than renewal process (slow geologic process)
as much as 40% of food grown worldwide is grown using fossil water

transportation costs
water is not profitable to move via tanker, as oil has proven
we don’t move water around too much
some large scale water infrastructure exists
California central valley

bottled water
1,000 times more expensive than tap
economically feasable to bottle and distribute water

Book — Bottled and Sold: The Story Behind Our Obsession with Bottled Water by Peter H. Gleick

Substatutability
there is no known substitute for water, for most things
e.g. growing food, human life

We build infrastructure to store and use the total flow of renewable water

How much peak renewable should we use?

Peak non-renewable water
depletion of fossil water
farmers are shifting back to dry ground farming techniques as water becomes more costly to pump

The more water we use, the more economic benefit we get
essentially linear process

The more water we use, the less ecological value remains intact

Inverse curves, produce a point of optimal use

Peak water
Non renewable water creates stock constraints
Renewable water sources create flow limits
Ecological limitations become more present

Solutions
Move to sustainable water management and useful

Develop new supply
Traditionally: more drilling, dam building, aquaduct, etc.
we are running into constraints on traditional supply
no more dams or aquifers that make economic sense (in U.S.)
other places in world need traditional infrastructure — built to different standards
consider economic, ecological, social, and cultural costs

Treated wastewater
asset, not liability
use highly treated wastewater in appropriate areas

Desalination
expensive but reliable

rainwater harvesting

groundwater/surface water together
recharge groundwater aquifers

maintain to a better level, existing water infrastructure

improve efficiency of water use
we are not at the limits of efficiency
we are often at the end of available water supply

improve/enforce standards for water quality

use economics, water is an economic good
true valuation, pricing questions, equity issues
price/meter water properly
balance economics with human rights

improve/expand public participation in decision making

improve water institutions
21st century revitalization

Simple web application load testing using ApacheBench

For a quick way to determine how your website/application responds to simultaneous requests, try the ApacheBench application.

ApacheBench can be installed on Ubuntu by installing the apache2-utils package.

sudo apt install apache2-utils

Once the apache-utils package is installed, run the ab command to test your website.

ab -n 100 -c 10 http://example.com

In the above example,

  • -n specifies the number of requests to run
  • -c specifies how many requests to run concurrently

General values – four domains

Following are my identified values (overarching commitments) in four common value domains. This is a course activity from the online course “Becoming a Resilient Person” at edX.

Work/Education

  • Study Geospatial Information Science
  • Contribute work to improve community
  • Improve water systems and access to clean water/sanitation
  • Document people and places through creative multimedia
  • Integrate into a network of professionals

Leisure/Self Expression

  • Experience and enjoy nature
  • Collect, organize, and share multimedia

Relationships

  • Be a caring and committed father
  • Bring peace to family relationships
  • Be a loving and committed partner
  • Build lasting friendships

Personal Growth/Health

  • Exercise regularly
  • Pursue a low impact lifestyle
  • Eat nutritional food
  • Study regularly
  • Complete tasks/projects that I start

My value domains

As part of the process of becoming resilient, I need to identify values and specific roles in which to apply my values. These contexts are known as value domains. As of this writing, I am able to identify the following value domains and roles, in which I need to clarify personal values:

  • Family
    • Son
    • Father
    • Partner
  • Work
    • Volunteer
    • Employee
    • Student
  • Friendship
  • Personal health/wellbeing

Water conflict and cooperation

Human population development

Human populations often grow near water sources. More recently, human populations have been developed in arid locations:

  • Los Angeles
  • Las Vegas

Water Projects

Water projects deliver water from remote locations to arid communities:

Energy and material costs of moving water are significant. Water is sometimes pumped up slope, over hundreds of miles, and from many sources.

Competition and Conflict

Native populations and local residents have historically asserted rights to local water sources. Additionally, water quality can be contentious from downstream communities that feel quality has been degraded by upstream uses.

  • Texas v. Oklahoma – Supreme Court ruled that Texas does not have right to Oklahoma water
  • China – undertaking major projects to convey water from South to North China, large water projects (3 Gorges Dam)
  • Owens Valley – local residents/farmers asserted right to water over Los Angeles
  • United States v. Mexico – Colorado River water is significantly depleted before getting to Mexico
  • Egypt and Ethiopia – Egypt has rights to water superseding water rights in Ethiopia
  • Singapore and Malaysia – Singapore relied on water from Malaysia; focused on water re-use/reclamation (water treated to high level put back in water system), now “water independent”

Cooperation and agreements

Water treaties are created between countries/populations to make agreements about water usage and passage. This brings cooperation between people, nations, etc.

Water contaminents

Human/Animal Sources

  • Excrement
  • Areas with poor sanitation

Nutrients

Nitrogen – amonia -> Nitrate

health concern: methemoglobinemia (Blue Baby Syndrome)

Phosphorus

Algal blooms; diurnal cycle leading to effects including fish death.

Example sources of phosphorus: detergent (tripolyphosphate)

Non-point sources

Sources of containments that are spread out across the landscape. E.g. agriculture.

Toxic organic compounds

PCB – Polychlorinated Biphenyls

  • used as insulators
  • low potential for combustion
  • potential carcenogens

Pesticides

DDT – dichlorodiphenyltrichloroethane

  • Effective at killing mosquitos
  • Prevented spread of malaria, saving countless lives
  • Affects bird reproduction
  • Rachel Carson – Silent Spring documents effects of DDT/organic chemicals on ecosystems

Chlorinated solvents

PCE – Tetrachloroethylene

  • Carcenogenic
  • Impacted water supply
    • Movie: Civil Action featuring John Travolta

Pharmeceuticals

  • Have health benefits
  • Emerge from body potentially un-altered
  • Flow through sewage treatment systems into environment

Heavy Metals

Metal Plating

Protects surface of metals, extending usefulness. Can find way into environment.